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TABLE 7.5 Biomasses of populations of selected herbivores living in

mixed communities in African national parks

Species are listed in order of increasing individual size. These species were chosen for listing
because they are statistically about average in population biomass for their body sizes.

exponents, we can write 7> = (r3)?3. Thus s «
(r3?7; and substituting v for r3, we get

5 ocp2ld (7.6)

Inwords, as spheres increase in size, their surface

Average biomass of entire
population per square

Average individual

area increases only as the two-thirds power of
their volume. Big spheres, therefore, have less

F . 2 .
Species dlemstor Godan) body melatt ko) surface area per unit of volume (or of weight)
Oribi (Ourebia ourebi) 44 13 than little spheres. Similar relationships hold
Gray duiker (Sylvicapra grimmia) 69 16 true for all sets of geometrically similar objects.
Whether you consider cubes, cylinders, hearts,
Gray rhebok (Pelea capreolus) 108 25 or whole animals, as the objects within a geo-
Warthog (Phacochoerus aethiopicus) 95 69 metrically similar set become larger, the area
Waterbuck (Kobus ellipsiprymnus) 155 210 of the (?utside surface is exp.ected to increase
approximately as the two-thirds power of vol-
Greater.kudu (Tragelaphus 200 215 ume, and the ratio of outside-surface area to
strepsiceros) .
volume declines.
Plains zebra (Equus burchelli) 460 275 Rubner’s surface “law” stated that the BMR
White rhino (Ceratotherium simum) 2400 1900 ofa rlr}ammal is proportional to its body-surface
Ay dlephat (aradonia aliicand] p— 5080 area * and that the allometric relation between

BMR and body weight is a corollary of this

Source: After Owen-Smith 1988.

of weight than do related larger animals; a practical consequence
is that small-bodied species may require relatively high doses of
a veterinary drug per unit of weight to achieve and sustain the
drug’s intended effect. Overall, the dynamics of accumulation
and dissipation of foreign chemicals often differ between related
large- and small-bodied species.

The explanation for allometric metabolism-size
relations remains unknown

The fact that b, the allometric exponent, tends to be near 0.7 in
widely diverse groups of animals is profoundly intriguing. For a
century, some of the greatest minds in biology have grappled with
the questions of why metabolic rate and body size are related allo-
metrically and why the allometric exponent is sometimes impres-
sively consistent. Great minds have been drawn to these questions
because of a conviction that the allometries are manifestations
of fundamental organizing principles of life. As yet, however, no
consensus exists about how to explain the allometries.

Ninety years ago, the problem seemed solved! Physiologists
thought then that they understood the reasons for not only the
allometric metabolism-size relation, but also the particular value
of b. The theory offered at that time has been reinvented by every
generation of biologists because it seems so “obvious.” Thus an
understanding of the theory’s flaws remains important even today.
Atthe time the theory first appeared in the early twentieth century,
all the data on metabolism—size relations were data gathered on
mammals, and mammals therefore dominated thinking about the
subject. During that period, Max Rubner articulated an explanatory
theory that is still known as Rubner’s surface “law.”

Euclidean geometry provides the starting point for understand-
ing this “law” that is not a law. Recall from your study of geometry
that the surface area s of a sphere is proportional to the square of
7, the sphere’s radius: s « 2. The volume v of a sphere, however,
is proportional to the cube of the radius: v « r*. From the rules of

proportionality. Rubner’s explanation of the
allometric relation rested on four logical steps:

1. Placental mammals maintain high, relatively constant body
temperatures (near 37°C) and thus tend to lose heat to the
environment when studied at thermoneutral environmental
temperatures.

2. Because heat is lost across an animal’s outer body surfaces,
the rate of heat loss from a mammal is approximately
proportional to the animal’s body-surface area.'

8. Small mammals have more surface area per unit of weight
than do large mammals and thus lose heat more rapidly per
unit of weight.

4. Heat lost must be replaced metabolically for a mammal to
stay warm. Accordingly, small mammals must produce heat
at a greater rate per unit of weight than large ones.

The surface “law” as just outlined can hardly be faulted as a
thought exercise. Why, then, do most physiologists today believe
that it is not the correct mechanistic explanation of the allometric
relation between BMR and body weight? The answer is that data
contradict the “law” in two respects. First, although the surface
“law” predicts an exponent b equal to about 0.67 (2/3), most
physiologists who have estimated values of b for mammals have
concluded that b is statistically higher than 0.67 to a significant
degree. Second, by now we realize, as emphasized already, that
poikilothermic animals—such as fish, frogs, and crabs—dis-
play allometric metabolism-size relations (see Figures 7.9 and
7.10). Rubner’s “law” cannot possibly explain these relations in

A modern holdover of the early emphasis on body-surface area is that surface
areas are employed to calculate certain sorts of critical variables in the contemporaty |
practice of medicine. In breast cancer chemotherapy, for example, the doses of |
chemotherapeutic agents administered to a woman are calculated from her body-
surface area.

15 During the era when Rubner’s surface law was accepted, this concept seemed ,
too obvious to be questioned. In fact, it is not exactly true because of details in the |
physics of heat transfer. J
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poikilotherms because the reasoning behind the “law” applies
only to animals that warm their bodies to elevated, regulated
temperatures using metabolic heat production. The consistency
of the metabolism-size relation across many animal groups sug-
gests a single mechanistic explanation. Because Rubner’s “law”
is irrelevant for most types of animals (most are poikilotherems),
it cannot be that explanation.

Since the time in the mid-twentieth century when the surface
“law” started to be rejected by most physiologists, several alternative
hypotheses have been put forward to explain allometric metabolism—
size relations. Physiologists, however, have not reached a consensus
in supporting any of the hypotheses. Until recently, debate tended to
center on whether the true value of b is 2/3 or 3/4. Physiologists as-
sumed that a single universal exponent existed and that, if it could be
nailed down, the underlying mechanistic basis for allometry would be
revealed. Why did difficulty exist in nailing down the exponent? For
along time, the amount of relevant data was not great, and everyone
could assume, therefore, that when abundant data became available,
the correct value for b would become obvious. What has actually
happened is quite different. Now that great quantities of carefully
scrutinized data are available, many specialists have concluded that
in fact there is no universal exponent. With lots of high-quality data
available, if researchers calculate two different values of b for two
different animal groups, the difference cannot readily be dismissed
as being merely a product of inadequate information.

Several research reports published in the past decade have
concluded that although the exponent b generally tends to be similar
in many animal groups, it is not identical. The exponent b is not a
constant, according to these reports. Among placental mammals,
for example, several meticulous efforts have concluded that bis dif-
ferentin some mammalian orders than in others. Also, as already
noted, b is greater when mammals are exercising than when they
are at rest. Moreover, b is higher when only large-bodied species
are analyzed than when only small-bodied species are.!®

As physiologists have searched for the mechanistic basis of
metabolism—size relations, a key question has been, what at-
tributes of animals are so common and so fundamental that they

1"A(’ca>rdingl_v, the log-log plot of metabolism-size data exhibits a bit of curvature
and requires a more complex equation than Equation 7.3 to be described in detail.

FIGURE 7.13 As the circulatory system is scaled up and down in
size and extent, constraints predicated on fractal geometry may
help give rise to allometric metabolic scaling A mammal's me-
tabolism is dependent on distribution of required resources to tissues
throughout the body. When Andreas Vesalius first described the circula-
tory system (a), its function was a mystery. Oxygen had not yet been
discovered, and the fact that the circulatory system delivers O, toall
tissues was inconceivable. In the years since, as many old questions
were answered, new questions came to the fore. One modern question
Is this: Given that mammals all have a circulatory system built on similar
Principles—and yet the dimensions of that system have had to be scaled
dramatically up and down as big and small species have evolved—what
geometric and functional constraints might have been encountered? A
fractal geometric approach to this question had to await Benoit Mandel-
brot's invention of fractal mathematics around 1980. Fractal systems, as
Seen in (b), are “self-similar” at multiple scales, meaning that the patterns
of branching of fine elements are Miniatures of the patterns of branch-
ng of large elements. (a from De Humani Corporis Fabrica, produced

Y Andreas Vesalius in 1543, as reproduced in Saunders and O'Malley
1950; b after Mandelbrot 1983.)
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could explain the way in which metabolism varies with size?
One attribute in particular has attracted a great deal of attention:
internal transport. For metabolism to occur, internal transport of
metabolic resources—notably O, and metabolic fuels—is critica].
In mammals and many other types of animals, this transport is
carried out by the circulatory system. Physiologists therefore real-
ized that they had to understand how the circulatory system—first
accurately described by Andreas Vesalius (1514-1564) in 1543
(Figure 7.1 3a)—changes in its inherent capabilities for transport

(a) Vesalius 1543: One of the first anatomically accurate
images of the human circulatory system

(b) Mandelbrot 1983: A fractal model of a branching
system such as the circulatory system

Fractal mathematics is being
used to try to understand how
the circulatory system changes
in its inherent capabilities for
transport as animals evolve to
be bigger or smaller.
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as animals evolve to be bigger or smaller. The new mathematics of
fractal geometry—invented more than 400 years later to describe the
properties of branching systems (Figure 7.13b)—was marshaled
to analyze this question. From this fractal research, a hypothesis
was propounded, that allometric metabolism-size relations oc-
cur in part because of geometrically imposed constraints. This
hypothesis stresses that in fractally structured transport systems,
rates of transport—and thus rates of supply of resources required for
metabolism—are geometrically constrained in distinctive ways as
body size is scaled up or scaled down over the course of evolution.
Computer models have been used to examine how the constraints
of fractal geometry interact with evolutionary selection pressures
to maintain optimized transport capabilities as animals evolve
different body sizes. These models initially predicted a universal
allometric exponent of 3/4—a discovery followed by an almost
giddy application of that exponent to new branches of biology
even though it is a product of theory and often not supported
by empirical data. Now most physiologists acknowledge that b
probably does not exhibit a single fixed value. Nonetheless, one
of the major themes in ongoing research is to revisit the analysis
of circulatory systems and other transport systems responsible
for distributing metabolic resources in the body. Those systems
may well play roles in constraining how metabolic rate can vary
with body size. Several other fascinating hypotheses are also
being investigated at present.

SUMMARY Metabolic Scaling: The

]

R on between M
Rate and Body Size

B BMR, SMR, and other measures of resting metabolic rate are
allometric functions of body weight within phylogenetically related
groups of animals (M = aW®, where b is usually in the vicinity of
0.7). Small-bodied species tend to have higher weight-specific
metabolic rates than do related large-bodied species, an effect
so great that the weight-specific BMR is 20 times higher in mice
than in elephants.

B Maximal aerobic metabolic rate also tends to be an allometric
function of body weight in sets of related species. In many cases
studied thus far, the allometric exponent for maximal metabolic
rate differs from that for resting metabolic rate.

B The allometric relation between metabolic rate and weight exerts
important effects on the organization and structure of both
individual animals and ecosystems. Heart rates, breathing rates,
mitochondrial densities, and dozens of other features of individual
animals are allometric functions of body weight within sets of
phylogenetically related species. In ecosystems, population
biomasses and other features of community organization may vary
allometrically with individual body size.

B Physiologists are not agreed on the explanation for the
allometric relations between metabolic rate and body weight.
Rubner's surface “law," based on heat loss from homeothermic
animals, does not provide a satisfactory explanation. Many of
the newest hypotheses recognize that the allometric exponent
varies in systematic ways and seek to explain that variation, as
by examining evolutionary constraints in resource distribution
systems such as the circulatory system.

Energetics of Food and Growth

Food and growth are important topics in animal energetics, aptly
discussed together because one animal’s growth is another’s food.
A consequential attribute of foods as energy sources is that lipids
are at least twice as high in energy density—energy value per unit
of weight (see Table 6.3)—as proteins and carbohydrates are. We
asked at the start of this chapter why polar explorers carry lipid-
rich foods, such as meat mixed with pure lard. If they are going to
pull, push, and lift their food for many miles before they eat it, the
explorers should choose food that provides a lot of energy per kilo-
gram transported. Similarly, migrating animals often capitalize on
the high energy density of lipids by carrying their fuel as body fat.

A key question about any food in relation to an animal’s
physiology is how efficiently the animal can digest (or ferment) the
food and absorb the products of digestion. The energy absorption
efficiency is defined to be the fraction of ingested energy that is

absorbed for use:'”

absorbed energy

Energy absorption efficiency = (7.7)

ingested energy

This efficiency matters because the absorbed energy is the
energy actually available to an animal for use in its metabolism.
To illustrate the importance of absorption efficiency, consider
the processing of ingested cellulose by humans and ruminants.
Because people cannot digest cellulose, they cannot absorb it, and
their absorption efficiency for cellulose is essentially 0%; if they eat
only cellulose, they starve. Ruminants such as cows, in contrast,
commonly achieve about 50% absorption efficiency for cellulose
because their rumen microbes ferment cellulose into compounds
that the animals can absorb; thus ruminants are able to use about
half of the energy available from cellulose in their metabolism. This
example illustrates how the physiology of digestion and absorption,
discussed in Chapter 6, bears on the physiology of energy.

Growing animals accumulate chemical-bond energy in their
bodies by adding tissue consisting of organic molecules. An impor-
tant question in many contexts is how efficiently they are able to
use their available food energy to build tissue. Two types of growth
efficiency, termed gross growth efficiency and net growth efficiency,
are defined on the basis of whether the food energy is expressed
as the ingested energy or the absorbed energy:!®

chemical-bond energy of tissue

added in net fashion by growth 78)

Gross growth efficiency = .
ingested energy

chemical-bond energg of tissue
- added in net fashion by erowth
Net growth efficiency = ———— Y EOW ge
: absorbed energy

'7See Figure 7.2. Recall that the energetic efficiency of a process is the output of
high-grade energy expressed as a ratio of input (see Equation 7.1). When digestion,
fermentation, and absorption are the functions of interest, the ou tput of high—gradﬂ
energy is the absorbed energy, whereas the input is the ingested energy.
15Referring to Equation 7.1, when growth is the energy input-output process of
interest, the output of high-grade energy is the chemical-bond energy of added
tissue, whereas the input is food energy.




